Possibility Theory I the Measure- and Integral-theoretic Groundwork
نویسندگان
چکیده
In this paper, I provide the basis for a measureand integral-theoretic formulation of possibility theory. It is shown that, using a general definition of possibility measures, and a generalization of Sugeno’s fuzzy integral – the seminormed fuzzy integral, or possibility integral –, a unified and consistent account can be given of many of the possibilistic results extant in the literature. The striking formal analogy between this treatment of possibility theory, using possibility integrals, and Kolmogorov’s measure-theoretic formulation of probability theory, using Lebesgue integrals, is explored and exploited. I introduce and study possibilistic and fuzzy variables as possibilistic counterparts of stochastic and real stochastic variables respectively, and develop the notion of a possibility distribution for these variables. The almost everywhere equality and dominance of fuzzy variables is defined and studied. The proof is given for a Radon-Nikodym-like theorem in possibility theory. Following the example set by the classical theory of integration, product possibility measures and multiple possibility integrals are introduced, and a Fubini-like theorem is proven. In this way, the groundwork is laid for a unifying measureand integral-theoretic treatment of conditional possibility and possibilistic independence, discussed in more detail in Parts II and III of this series of three papers.
منابع مشابه
Possibility Theory Iii Possibilistic Independence
The introduction of the notion of independence in possibility theory is a problem of long-standing interest. Many of the measure-theoretic definitions that have up to now been given in the literature face some difficulties as far as interpretation is concerned. Also, there are inconsistencies between the definition of independence of measurable sets and possibilistic variables. After a discussi...
متن کاملPossibility Theory Ii Conditional Possibility
It is shown that the notion of conditional possibility can be consistently introduced in possibility theory, in very much the same way as conditional expectations and probabilities are defined in the measureand integral-theoretic treatment of probability theory. I write down possibilistic integral equations which are formal counterparts of the integral equations used to define conditional expec...
متن کاملSome generalizations of Darbo's theorem for solving a systems of functional-integral equations via measure of noncompactness
In this paper, using the concept of measure of noncompactness, which is a very useful and powerful tools in nonlinear functional analysis, metric fixed point theory and integral equations, we introduce a new contraction on a Banach space. For this purpose by using of a measure of noncompactness on a finite product space, we obtain some generalizations of Darbo’s fixed-point theorem. Then, with ...
متن کاملSOME SIMILARITY MEASURES FOR PICTURE FUZZY SETS AND THEIR APPLICATIONS
In this work, we shall present some novel process to measure the similarity between picture fuzzy sets. Firstly, we adopt the concept of intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and picture fuzzy sets. Secondly, we develop some similarity measures between picture fuzzy sets, such as, cosine similarity measure, weighted cosine similarity measure, set-theoretic similar...
متن کاملFuzzy relations, Possibility theory, Measures of uncertainty, Mathematical modeling.
A central aim of educational research in the area of mathematical modeling and applications is to recognize the attainment level of students at defined states of the modeling process. In this paper, we introduce principles of fuzzy sets theory and possibility theory to describe the process of mathematical modeling in the classroom. The main stages of the modeling process are represented as fuzz...
متن کامل